Correlation and Independence

Correlation and Independence

A book store with a lar	ge collection of books,	roughly has the
following distribution		
Page Price proportion		

i ugo	1 1100	proportion	
100	200	.1	
100	1000	.4	
200	1000	.2	X – Number of pages
200	200	.1	Y – Price
300	1000	.05	Joint distribution of (X, Y) .
300	200	.05	
400	1000	.03	
400	200	.07	

V	000	1000	1	(Marair	
Y	200	1000		(iviargir	ŀ
Х				X	
100	.1	.4	0.5	100	
200	.1	.2	0.3	200	
300	.05	.05	0.1	300	
400	.03	.07	0.1	400	
	P(Y =	່1000∣ <i>X</i>	X = 20	$(0) = \frac{2}{3}$	
(Condit	ional dis	stribut	ion of \check{Y} given X	

(Marginal) distn of X X prob 100 0.5 200 0.3 300 0.1 400 0.1

Independence

Independence

X, Y are said to be independent if for all x, y,

$$P(X = x, Y = y) = P(X = x)P(Y = y)$$

Another Example

- From a population draw two samples, one (X₁), and then another (X₂) without replacement – Dependent
- ▶ with replacement –Independent

- These notions can be extended to continuous random variables.
- Consequences of independence of X, Y
 - $E(XY) = \mu_X E(Y)$
 - for any $n, m, E(X^n Y^m) = E(X^n)E(Y^m)$

Covariance and Correlation

- $E(XY) \mu_X E(Y)$ Covariance between X and Y.
- Independence \implies Cov(X,Y) =0
- Covariance depends on scale
- Correlation Coefficient

$$\rho(X, Y) = \frac{cov(X, Y)}{s.d(X)s.d(Y)}$$

- Cov(aX + b, cY + d) = a c Cov(X, Y). Covariance depends on the scale
- The correlation between X, Y is

$$\rho(X, Y) = \frac{\operatorname{Cov}(X, Y)}{s.d(X)s.d(Y)}$$

- $\rho(X, Y)$ is scale free, lies between -1 and 1
- ρ is a measure of the linear relationship between X and Y. $\rho(X, Y) = 1$ implies Y = aX + b

Caution!!

- If X and Y are independent then $\rho(X, Y) = 0$.
- converse is not true. Check the case where X takes values -1, 0, 1 with equal probability and $Y = X^2$
- Needs care in interpreting when *ρ*(*X*, *Y*) ≠ 0. Presence of latent variables.

Figure: Correlations

Sampling distributions

Sampling distributions

- \blacktriangleright Suppose we have a large population with average μ and s.d σ
- we want to draw *n* samples from the population and compute their average and s.d
- \blacktriangleright How is the sample average related to the population average μ

- Before taking the sample, the *n*, sample values X₁, X₂,..., X_n that we would obtain are random with distribution governed by the population distribution
- the sample average \bar{X} is also, hence, random
- Since the population is large we may assume that the samples are independent

 ${oldsymbol E}(ar X)=\mu$

$$s.d(\bar{X}) = \frac{\sigma}{n}$$

Sampling distributions

Let us interpret the expressions

$$\mu_{\bar{X}} = \mu \qquad \sigma_{\bar{X}} = \frac{\sigma}{n}$$

- By chebyshev, each of the observations will be within 3σ of μ with 90% probability
- The sample average will be within $3\frac{\sigma}{n}$ of μ with 90% probability.

In n = 100, \bar{X} will be 10 times closer to the population mean with 90% probability.

Switch the argument. If we do not know μ, we can say that
 " the population average will be within 3^σ/_n of X̄ with 90% probability

This is related to confidence intervals. Shall return later

A common statistical model

- Think of a Large population say the people of Kerala.
- We are interested in the aveage income of this population
- Suppose we decide to pick 100 individuals at random from this population and record their incomes
- X₁ income of the first sample is a random variable with distribution given by the income distribution in the population. Similarly X₂,..., X₁₀₀ are income of the 100 samples
- Since the population is large, we may assume that X₁, X₂,..., X₁₀₀ are independent. Further, they are all samples from the same population, so have the same distribution, in particular the same mean and same s.d

Earlier slide

- Applying chebyshev's inequality
 - each sample will have 90% probability of being within 3 s.d of the mean

 $\mu = 3.95$

 $\sigma = 1.76$

- What about \bar{X} ?
- \bar{X} will be within 3 $\sigma_{\bar{X}}$, 0.3 s.d of the mean with 90% probability

- If repeated random samples were drawn from the population with population mean μ and population s.d. σ
- average of the data will be approx μ
- s.d. of data will be approx σ
- in our case
 - if repeated observations were made of \bar{X}
 - average of these sample averages will be approx μ
 - ▶ s.d. of these sample averages will be approx $s.d(\bar{X}) = \frac{\sigma}{\sqrt{n}}$

Interpretation

Only proportions matter

simulation example

- draw a sample of size 9 from a population with mean , compute the average
- repeat the above say 1000 times. This gives 1000, sample averages
- ▶ the average of these "sample averages " close to 3.95
- ▶ the s.d of these "sample averages " close to 1.76/3 = 0.59

Distn of \bar{X} in normal populations

- \blacktriangleright We have a normal population with mean μ and s.d σ
- \bar{X} is the average of *n* samples from the population
- we have seen

$$\mu_{\bar{X}} = \mu \qquad \sigma_{\bar{X}} = \frac{\sigma}{n}$$

- does normality give us anything more?
- \bar{X} is normal with mean μ and s.d = $\sigma_{\bar{X}} == \frac{\sigma}{\sqrt{n}}$.

simulation

modified slide

- if repeated observations were made of \bar{X}
- \blacktriangleright average of these sample averages will be approx μ
- s.d. of these sample averages will be approx $s.d(\bar{X}) = rac{\sigma}{\sqrt{n}}$
- the histogram of the sample averages will look like a normal with mean μ and s.d $\frac{\sigma}{\sqrt{n}}$

simulation, normalxbardistn

A common statistical model-modified

- We are interested in the aveage income of a large population
- Suppose we decide to pick 9 individuals at random from this population and record their incomes
- X₁ income of the first sample is a random variable with distribution given by the income distribution in the population. Similarly X₂,..., X₉ are income of the 9 samples

- Applying chebyshev's inequality
 - each sample will have 90% probability of being within 3 s.d of the mean
 - X
 will be within 3 σ_{X̄}, 0.3 s.d of the mean with 90% probability
- if the population is normal
- each sample will have 95% probability of being within 1.96
 s.d of the mean
- we see that \bar{X} will be within 1.96 $\sigma_{\bar{X}}$, $\frac{1.96}{3}$ s.d of the mean with 95% probability

Central Limit Theorem

Let X_1, X_2, \ldots be a sequence of independent identically distributed random variables with finite mean μ and finite s.d σ . Let $\bar{X}_n = \frac{X_1 + X_2 + \ldots + X_n}{n}$. Then for all t,

$$P\left(rac{\sqrt{n}(ar{X_n}-\mu)}{\sigma}\leq t
ight)
ightarrow \Phi(t)$$

In words, for large *n*, $\bar{X_n}$ is approximately distributed as $N(\mu, \frac{\sigma}{n})$

simulation clt small sample

CLT and sample proportion

- A population has units that are in one of two categories S, F
- p is the proportion of S
- A sample of size n is drawn
- X number of of S in the sample

 $\hat{p} = \frac{X}{n}$ sample proportion

•
$$\hat{p}$$
 is approx. $N(p, \sqrt{\frac{p(1-p)}{n}})$

CLT and sample proportion

CONFIDENCE INTERVALS

- Let $X_1 = 1$ if the first sample is S, and 0 if F
- Let $X_2 = 1$ if the first sample is S, and 0 if F
- ▶
- $\blacktriangleright X = X_1 + X_2 + \ldots + X_n$

•
$$\hat{p} = \frac{X_1 + X_2 + ... + X_r}{n}$$

• $\hat{p} = \frac{x_1 + x_2 + ... + X_n}{n}$ • Use CLT. Note $E(X_1) = p$, $s.d(X_1) = \sqrt{p(1 - 1p)}$

- confidence interval for the mean of a normal population
- σ known Toy model, but illustrative
- $\blacktriangleright \sigma$ unknown
- Large sample confidence interval for proportion

simulation clt

CONFIDENCE INTERVALS

CONFIDENCE INTERVALS

- We have a population that can be modelled as Normal
- The population mean μ is not known
- The population s.d σ is known

- \blacktriangleright Using a sample (of size 'n') propose a range of values for μ
- State a measure of confidence of the proposed interval
- A 95% confidence level for μ means
- We want 'B' such that

$$P(ar{X} - B < \mu < ar{X} - B) = .95$$

how do we find 'B'?

Confidence intervals: known σ Since

$$rac{ar{X}-\mu_{ar{X}}}{\sigma_{ar{X}}}=rac{\sqrt{n}(ar{X}-\mu)}{\sigma}\sim N(0,1)$$

$$P(-1.96 < rac{\sqrt{n}(ar{X}-\mu)}{\sigma} < 1.96) = .95$$

A bit of algebra gives

$$P(ar{X}-1.96rac{\sigma}{\sqrt{n}}<\mu$$

• If we set $B = 1.96 \frac{\sigma}{\sqrt{n}}$, then

$$P(\mu \in ar{X} \pm B) = .95$$

• $\bar{X} \pm B$ is called 95 % confidence interval for the mean

Confidence intervals: Interpretation

- Suppose repeated samples are to be drawn.
- In each case we claim that $\bar{X} \pm B$ contains the population mean
- In 95% of the cases we would be right

Confidence intervals

Confidence intervals

- In general formulation, we model the population to have a distribution depending on some unknown parameters for normal μ, σ
- We want to get a confidence interval for a parameter θ for normal μ, σ
- the general expression is $\hat{\theta} + k_c(s.d(\hat{\theta}))$, where
 - $\hat{\theta}$ is an estimate of θ
 - *k_c* is a factor determined by the confidence level and the distribuiton of ^{*θ*-θ}/_{s.d(*θ*)}

- the general expression is $\hat{\theta} + k_c(s.d(\hat{\theta}))$, where
 - $\hat{\theta}$ is an estimate of θ
 - *k_c* is a factor determined by the confidence level and the distribuiton of ^θ -θ
 s.d(θ)
- In general s.d(\u00f3) would involve population parameters and one would substitute it an estimate of s.d(\u00f3). This is called STANDARD ERROR
- $\blacktriangleright \hat{\theta} + k_c(S.E(\hat{\theta}))$

Confidence intervals

Confidence intervals

- If both μ and σ of a normal population is not known.
- $s.d(\bar{X}) = \frac{\sigma}{\sqrt{n}}$. and S.E. $(\bar{X}) = \frac{s}{\sqrt{n}}$
- where s is the standard deviation of the sample
- k_c is computed using a *t* distribution

- In a population with objects of two types (S, F). Want to estimate the proportion p of S in the population
- $\hat{p} = \frac{\text{number of S in the sample}}{n}$ is an estimate of p
- Standard error of $\hat{p} = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$
- for large n, k_c is calculated using normal tables.

Other Issues

- For the normal, suppose we fix B and confidence level 95%. How large a sample do we need to ensure that $\bar{X} \pm B$ has 95% confidence level
- Look at $B = 1.96 \frac{\sigma}{\sqrt{n}}$. solve for *n*

▶
$$n = [\frac{1.96\sigma}{B}]^2$$

Other Issues

- In a population with objects of two types (S, F). Want to estimate the proportion p of S in the population
- Suppose we fix B and confidence level 95%. How large a sample do we need to ensure that p
 <u>
 <u>
 </u> B has 95% confidence level
 </u>

•
$$n = [\frac{1.96\sqrt{\hat{p}(1-\hat{p})}}{B}]^2$$

► the S.E. attains maximum at .5. So conservative value for n is [^{1.96×0.5}/_B]²