
Correlation and Independence

A book store with a large collection of books, roughly has the
following distribution

Page Price proportion
100 200 .1
100 1000 .4
200 1000 .2
200 200 .1
300 1000 .05
300 200 .05
400 1000 .03
400 200 .07

X – Number of pages
Y – Price
Joint distribution of (X ,Y ).

Correlation and Independence

Y 200 1000
X

100 .1 .4 0.5
200 .1 .2 0.3
300 .05 .05 0.1
400 .03 .07 0.1

(Marginal) distn of X
X prob

100 0.5
200 0.3
300 0.1
400 0.1

P(Y = 1000|X = 200) = .2
.3

Conditional distribution of Y given X

Independence

X , Y are said to be independent if for all x , y ,

P(X = x ,Y = y) = P(X = x)P(Y = y)

Another Example

I From a population draw two samples, one (X1), and then
another (X2)
without replacement – Dependent

I with replacement –Independent

Independence

I These notions can be extended to continuous random
variables.

I Consequences of independence of X ,Y
I E(XY ) = µX E(Y )
I for any n,m, E(X nY m) = E(X n)E(Y m)



Covariance and Correlation

I E(XY )− µX E(Y ) – Covariance between X and Y .
I Independence =⇒ Cov(X,Y) =0
I Covariance depends on scale
I Correlation Coefficient

ρ(X ,Y ) =
cov(X ,Y )

s.d(X )s.d(Y )

I Cov(aX + b, cY + d) = a c Cov(X ,Y ). Covariance
depends on the scale

I The correlation between X ,Y is

ρ(X ,Y ) =
Cov(X ,Y )

s.d(X )s.d(Y )

I ρ(X ,Y ) is scale free, lies between -1 and 1
I ρ is a measure of the linear relationship between X and Y .
ρ(X ,Y ) = 1implies Y = aX + b

Caution!!

I If X and Y are independent then ρ(X ,Y ) = 0.
I converse is not true. Check the case where X takes values
−1,0,1 with equal probability and Y = X 2

I Needs care in interpreting when ρ(X ,Y ) 6= 0. Presence of
latent variables.
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Figure: Correlations



Sampling distributions

I Suppose we have a large population with average µ and
s.d σ

I we want to draw n samples from the population and
compute their average and s.d

I How is the sample average related to the population
average µ

Sampling distributions

I Before taking the sample, the n, sample values
X1,X2, . . . ,Xn that we would obtain are random with
distribution governed by the population distribution

I the sample average X̄ is also, hence, random
I Since the population is large we may assume that the

samples are independent
I

E(X̄ ) = µ

I

s.d(X̄ ) =
σ

n

Sampling distributions

I Let us interpret the expressions

µX̄ = µ σX̄ =
σ

n

I By chebyshev, each of the observations will be within 3σ of
µ with 90% probability

I The sample average will be within 3σn of µ with 90%
probability.
In n = 100, X̄ will be 10 times closer to the population
mean with 90% probability.

I Switch the argument. If we do not know µ, we can say that
“ the population average will be within 3σn of X̄ with 90%
probability
This is related to confidence intervals. Shall return later

A common statistical model

I Think of a Large population – say the people of Kerala.
I We are interested in the aveage income of this population
I Suppose we decide to pick 100 individuals at random from

this population and record their incomes
I X1 – income of the first sample is a random variable with

distribution given by the income distribution in the
population. Similarly X2, . . . ,X100 are income of the 100
samples

I Since the population is large, we may assume that
X1,X2, . . . ,X100 are independent. Further, they are all
samples from the same population, so have the same
distribution, in particular the same mean and same s.d



I Applying chebyshev’s inequality
I each sample will have 90% probability of being within 3 s.d

of the mean
I What about X̄ ?
I X̄ will be within 3 σX̄ , 0.3 s.d of the mean with 90%

probability

Earlier slide

I If repeated random samples were drawn from the
population with population mean µ and population s.d. σ

I average of the data will be approx µ
I s.d. of data will be approx σ
I in our case

I if repeated observations were made of X̄
I average of these sample averages will be approx µ
I s.d. of these sample averages will be approx s.d(X̄ ) = σ√

n

Interpretation
Only proportions matter

Population Distribution

1 × 2000

2 × 3000

3 × 4000

4 × 1000

5 × 5000

6 × 5000

µ = 3.95
σ= 1.76

simulation example

I draw a sample of size 9 from a population with mean ,
compute the average

I repeat the above say 1000 times. This gives 1000, sample
averages

I the average of these “sample averages ” close to 3.95
I the s.d of these “sample averages ” close to 1.76/3 = 0.59



simulation

Distn of X̄ in normal populations

I We have a normal population with mean µ and s.d σ
I X̄ is the average of n samples from the population
I we have seen

µX̄ = µ σX̄ =
σ

n
I does normality give us anything more?
I X̄ is normal with mean µ and s.d = σX̄ == σ√

n .

modified slide

I if repeated observations were made of X̄
I average of these sample averages will be approx µ
I s.d. of these sample averages will be approx s.d(X̄ ) = σ√

n
I the histogram of the sample averages will look like a

normal with mean µ and s.d σ√
n

simulation, normalxbardistn



A common statistical model-modified

I We are interested in the aveage income of a large
population

I Suppose we decide to pick 9 individuals at random from
this population and record their incomes

I X1 – income of the first sample is a random variable with
distribution given by the income distribution in the
population. Similarly X2, . . . ,X9 are income of the 9
samples

I Applying chebyshev’s inequality
I each sample will have 90% probability of being within 3 s.d

of the mean
I X̄ will be within 3 σX̄ , 0.3 s.d of the mean with 90%

probability
I if the population is normal
I each sample will have 95% probability of being within 1.96

s.d of the mean
I we see that X̄ will be within 1.96 σX̄ , 1.96

3 s.d of the mean
with 95% probability

Central Limit Theorem

Let X1,X2, . . . be a sequence of independent identically
distributed random variables with finite mean µ and finite s.d σ.
Let X̄n = X1+X2+...Xn

n . Then for all t ,

P
(√

n(X̄n − µ)

σ
≤ t
)
→ Φ(t)

In words, for large n, X̄n is approximately distributed as N(µ, σn )

simulation clt small sample



simulation clt

CLT and sample proportion

I A population has units that are in one of two categories S,
F

I p is the proportion of S
I A sample of size n is drawn
I X number of of S in the sample

p̂ =
X
n

sample proportion

I p̂ is approx. N(p,
√

p(1−p)
n )

CLT and sample proportion

I Let X1 = 1 if the first sample is S, and 0 if F
I Let X2 = 1 if the first sample is S, and 0 if F
I . . . . . .

I X = X1 + X2 + . . .+ Xn

I p̂ = X1+X2+...+Xn
n

I Use CLT. Note E(X1) = p, s.d(X1) =
√

p(1− 1p)

CONFIDENCE INTERVALS

I confidence interval for the mean of a normal population
I σ known Toy model, but illustrative
I σ unknown
I Large sample confidence interval for proportion



CONFIDENCE INTERVALS

I We have a population that can be modelled as Normal
I The population mean µ is not known
I The population s.d σ is known

CONFIDENCE INTERVALS

I Using a sample (of size ‘n‘) propose a range of values for µ
I State a measure of confidence of the proposed interval
I A 95% confidence level for µ means
I We want ‘B‘ such that

P(X̄ − B < µ < X̄ − B) = .95

I how do we find ‘B‘?

Confidence intervals: known σ
Since

I
X̄ − µX̄
σX̄

=

√
n(X̄ − µ)

σ
∼ N(0,1)

I

P(−1.96 <
√

n(X̄ − µ)

σ
< 1.96) = .95

I A bit of algebra gives

P(X̄ − 1.96
σ√
n
< µ < X̄ + 1.96

σ√
n

) = .95

I If we set B = 1.96 σ√
n , then

P(µ ∈ X̄ ± B) = .95

I X̄ ± B is called 95 % confidence interval for the mean

Confidence intervals: Interpretation

I Suppose repeated samples are to be drawn.
I In each case we claim that X̄ ± B contains the population

mean
I In 95% of the cases we would be right



Confidence intervals

I In general formulation, we model the population to have a
distribution depending on some unknown parameters for
normal µ, σ

I We want to get a confidence interval for a parameter θ for
normal µ, σ

I the general expression is θ̂ + kc(s.d(θ̂)) , where
I θ̂ is an estimate of θ
I kc is a factor determined by the confidence level and the

distribuiton of θ̂−θ
s.d(θ̂)

Confidence intervals

I the general expression is θ̂ + kc(s.d(θ̂)) , where
I θ̂ is an estimate of θ
I kc is a factor determined by the confidence level and the

distribuiton of θ̂−θ
s.d(θ̂)

I In general s.d(θ̂) would involve population parameters and
one would substitute it an estimate of s.d(θ̂). This is called
STANDARD ERROR

I θ̂ + kc(S.E(θ̂))

Confidence intervals

I If both µ and σ of a normal population is not known.
I s.d(X̄ ) = σ√

n . and S.E.(X̄ ) = s√
n

I where s is the standard deviation of the sample
I kc is computed using a t distribution

Confidence intervals

I In a population with objects of two types (S, F). Want to
estimate the proportion p of S in the population

I p̂ =
number of S in the sample

n is an estimate of p

I Standard error of p̂ =

√
p̂(1−p̂)

n
I for large n, kc is calculated using normal tables.



Other Issues

I For the normal, suppose we fix B and confidence level
95%. How large a sample do we need to ensure that
X̄ ± B has 95% confidence level

I Look at B = 1.96 σ√
n . solve for n

I n = [1.96σ
B ]2

Other Issues
I In a population with objects of two types (S, F). Want to

estimate the proportion p of S in the population
I Suppose we fix B and confidence level 95%. How large a

sample do we need to ensure that p̄ ± B has 95%
confidence level

I n = [
1.96
√

p̂(1−p̂)
B ]2
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I the S.E. attains maximum at .5. So conservative value for
n is [1.96×0.5

B ]2


