
The Riemann mapping theorem

1 Introduction

In this short note, we give a complete and self-contained proof of the most profound and important
theorem in Complex Analysis:

Theorem 1. Let U ⊂ C be a simply-connected domain, U , C. Then we can �nd a biholomorphism
fromU onto the unit disk D.

Remark 2. Throughout these notes, a domain is an open and connected subset of C. Unless otherwise
speci�ed, U will denote a domain in C.

To say that the above theorem is shocking is an understatement! To get a sense of the profundity of
the above theorem, let us �rst clarify the meanings of the terms simply-connected and biholomorphism.

De�nition 3. LetU be a domain. Let γ0,γ1 : [0, 1]→ U be two continuous curves that have the same
starting and ending points, say a and b, respectively. We say that γ0 and γ1 are homotopic inU if γ0 can
be continuously deformed intoγ1. More precisely, there exists a continuous mapH : [0, 1]×[0, 1]→ U
such that

H (s, 0) = γ0 (s ) ∀s ∈ [0, 1]
H (s, 1) = γ1 (s ) ∀s ∈ [0, 1]
H (0, t ) = a ∀t ∈ [0, 1]
H (1, t ) = b ∀t ∈ [0, 1].

We say that U is simply-connected if any two curves in U that have the same starting and ending
points are homotopic.

Remark 4. We have considered only curves de�ned on [0, 1]. However, it is quite easy to reformulate
the de�nition for curves de�ned on any interval [a,b].
Exercise 5. Show that being homotopic in U is an equivalence relation.
Remark 6. The use of the variable ‘t’ for the second-slot of H is not coincidental. It is helpful to view
this variable as time and adopt a “dynamical” viewpoint. We view the curve γ0 as getting slowly
deformed over time into γ1. To emphasize this view, we will often think of the homotopy H as a
continuous one parameter family of curves γt .

Example 7. LetU be a convex domain. ThenU is simply-connected. To see this consider the straight
line homotopy between the curves γ0 and γ1 given by

γt (s ) := (1 − t )γ0 (s ) + tγ1 (s ).

Example 8. The set C \ {0} is not simply-connected. This is intuitively clear. You will have all the
tools needed to give a rigorous proof
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2 Prerequisites

Exercise 9. Show that a domain U is simply-connected if and only if every loop in U is homotopic to
a constant curve.

De�nition 10. An injective holomorphic map from a domain is called a biholomorphism.

Exercise 11. If f : U → C is a biholomorphism, show that f ′ is nowhere vanishing on U .
Exercise 12. Let U be a domain and let f : U → C be a biholomorphism. Show that f −1 : f (U ) → U
is also holomorphic.

The last exercise shows that any biholomorphism is automatically a homeomorphism onto its im-
age. Biholomorphisms are also known as conformal isomorphisms.
Exercise 13. Let U be a convex domain. Show that U is homeomorphic to the unit disk D.

The Riemann mapping theorem asserts something far stronger than the above exercise. It says, in
particular, that the homeomorphism that exists from the exercise can be chosen to be a biholomor-
phism. The interior of the square is a certainly a convex domain. However, writing down an explicit
biholomorphism from the interior of the square into the disk is very di�cult (try it!) and cannot
even be done in terms of elementary functions. The profundity of the Riemann mapping should be
apparent now. An arbitrary simply connected domain could be highly complicated and it is not at all
obvious that it is even homeomorphic to the unit disk! Once we have a biholomorphism to the unit
disk, we can carry out our analysis in D and transfer the result back to the original domain via the
biholomorphism.

The above paragraph motivates the question as to why one should even believe that the Riemann
mapping theorem is true?! Riemann’s intuition came from physics; speci�cally hydrodynamics and
electrodynamics. We will not delve into this. See [BN10] for a detailed and elementary treatment.
Though Riemann’s intuition was correct, his proof was not. Riemann used physics to justify a theo-
rem, now known as the Dirichlet principle which was the crucial tool used in his proof. Weierstrass
gave a counterexample to the Dirichlet principle proving that Riemann’s proof was incorrect.

Riemann’s original approach can be �xed. See [GK17]. However, we will not be following this
approach. We will instead present the elegant approach due to Koebe.

2 Prerequisites

Here we will state (without proof) standard facts from complex analysis that we will assume the
reader is familiar with. The textbooks [BN10, Gam01, SS03] are excellent elementary references for
these results. For a more terse and advanced treatment, see [NN01]

Theorem 14 (Fundamental Theorem of Complex Calculus). Let f be holomorphic on U and suppose
F is a primitive (anti-derivative) of f , i.e., F ′ = f . Then for any piecewise smooth curve γ : [a,b] → U ,
we have ∫

γ
f = F (b) − F (a).

Theorem 15 (Cauchy’s theorem for the disk). Let f : D → C be holomorphic and let γ : [a,b] → D
be a piecewise-smooth closed loop. Then

1. f has a primitive, i.e., we can �nd F : D→ C such that F ′ ≡ f .
2.

∫
γ f dz = 0.
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3 The Schwarz lemma

Theorem 16 (The Argument Principle). Let f be meromorphic on some neighborhood of the closure of
a disk D. Assume that f has no zeros or poles on ∂D. Then∫

∂D

f ′(z)

f (z)
dz = N − P ,

where N is the number of zeros of f in D and P is the number of poles in D.

Theorem 17 (Open mapping theorem). Any non-constant holomorphic mapping on a domainU is an
open map.

3 The Schwarz lemma

The Schwarz lemma is one of the most important “lemmas” in all of mathematics. There is an entire
book by Sean Dineen on the lemma! Therefore we have no qualms in calling it a theorem.

Theorem 18. Let f : D→ D be holomorphic and suppose f (0) = 0. Then

1. | f (z) | ≤ z,
2. | f ′(0) | ≤ 1,
3. If either of the inequalities above is not strict, then f is a rotation.

Proof. Consider the function д(z) = f (z)/z with the value at 0 de�ned to be f ′(0). The function д is
clearly holomorphic except for 0 and as д is clearly continuous at 0 also, 0 is a removable singularity
for д. If |z | = r , then |д(z) | < 1/r which by the maximum-modulus theorem propagates to the whole
disk of radius r . By taking r → 1+, we conclude that |д(z) | ≤ 1 with equality if and only if д is
constant. Hence, | f (z) | ≤ |z | with equality if and only f = cz where c is a unimodular constant, in
other words when f is a rotation. The other assertions follows easily. �

Exercise 19. Fix a ∈ D. Show that the fractional linear transformation

ψa := a − z

1 − az
that interchanges 0 and a is in fact an automorphism of the disk.

Theorem 20. Letψ be an automorphism of the unit disk and let a = ψ (0). Then we can �nd θ such that

ψ = eiθ
eiθa − z

1 − eiθaz
.

Proof. Consider the map ϕ := ψa ◦ψ . Now ϕ (0) = 0 and ϕ is an automorphism and therefore ϕ is a
rotation. This proves the theorem. �

4 A Cauchy theorem for simply-connected domains

Theorem 21. Let U be a domain and f : U → C be holomorphic. Suppose γ1,γ2 : [0, 1] → U are
homotopic piecewise smooth curves. Then ∫

γ0
f dz =

∫
γ1
f dz,

whenever γi : [a,b]→ U is a piecewise smooth curve.
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4 A Cauchy theorem for simply-connected domains

Proof. Let H : [0, 1] × [0, 1] → U be a homotopy from γ0 to γ1. Though the curves γ0 and γ1, there is
absolutely no reason to expect that all the intermediate curves are also piecewise smooth. However,
we shall prove the result with this added assumption. The set K := H ([0, 1] × [0, 1]) is a compact set.
Let ε > 0 be chosen so small that the disk of radius 3ε centered at any point in K is fully-contained in
U .
Exercise 22. Show that ε = d (K , ∂U )/6 works.

Any continuous function on a compact set is uniformly continuous. Consequently, we can �nd a
δ > 0 such that if |t1 − t2 | < δ , t1, t2 ∈ [0, 1] then

|γt1 (s ) − γt2 (s ) | < ε .

Fix t1 ∈ [0, 1] such that |t1 | < δ . Cover im(γ0) by �nitely many disks {D0,D1, . . . ,Dn } centered
at points of im(γ0) of radius 2ε such that disks of radius ε centered at the same points also cover
im(γ0). This can be done because of compactness. By re-indexing these disks, we can assume that
γ0 (0) = γt1 (0) ∈ D0 and γ0 (1) = γt1 (1) ∈ Dn . Choose points z0, z1, . . . , zn+1 and w0,w1, . . . ,wn+1 such
that

• zi , zi+1,wi ,wi+1 ∈ Di ,
• zi ∈ im(γ0) and wi ∈ im(γt1 ),
• z0 = w0 = γ0 (0) = γt1 (0),
• zn+1 = wn+1 = γ0 (1) = γt1 (1),
• By re-indexing, we may assume that z0, . . . , zn+1 and w0, . . . ,wn+1 are consecutive points on
γt1 and γt2 .

On each Di , let Fi be a primitive of f . On Di ∩ Di+1, the primitives Fi and Fi+1 must di�er by a
constant. Consequently,

Fi+1 (zi+1) − Fi (zi+1) = Fi+1 (wi+1) − Fi (wi+1).

Rearranging, we get
Fi+1 (zi+1) − Fi+1 (wi+1) = Fi (zi+1) − Fi (wi+1)

The above equation combined the fundamental theorem of calculus for complex line integrals
shows that ∫

γ1
f −

∫
γ2
f =

n∑
i=0

Fi (zi+1) − Fi (zi ) −
n∑
i=0

Fi (wi+1) − Fi (wi )

=

n∑
i=0

Fi (zi+1) − Fi (wi+1) − (Fi (zi ) − Fi (wi ))

= Fn (zn+1) − Fn (wn+1) − (F0 (z0) − F0 (w0)) = 0.

What we shown is that if the curve γt1 is suitably close to the curve γ0, then the integrals of f over
γ0 and γt1 are the same. Now, we can repeat the same argument with γt1 playing the role of γ0 and γt2
that of γt1 , where |t2 − t1 | < δ . Repeating this �nitely many times yields the result. �

Exercise 23. Think about how the above argument can be modi�ed to prove the above theorem without
the added assumption that γt is a always piecewise smooth.
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4 A Cauchy theorem for simply-connected domains

Corollary 24 (Cauchy’s theorem). Let f be holomorphic on U and let γ be a piecewise smooth curve
that is homotopic to a constant curve. Then ∫

γ
f = 0.

In particular, ifU is simply-connected, then ∫
γ
f = 0,

whenever γ is a piecewise smooth loop inU .

Exercise 25. Show that on any simply connected domain, any holomorphic function has a primitive.
Exercise 26. Show that C \ {0} is not simply-connected.

4.1 The complex logarithm

The �nal exercise in the previous section allows to answer the following natural question: On which
domains can we �nd a holomorphic branch of the complex logarithm?

Such a domain must necessarily miss the origin. We now give a su�cient condition.

Theorem 27. Let U be a simply-connected domain that misses the origin and 1 ∈ U . Then we can �nd
a holomorphic function F onU with the following properties:

1. exp(F (z)) = z.
2. F (r ) = log r whenever r is a real number near 1.

Proof. If a branch of the logarithm where to exist then its derivative must be 1
z . So we de�ne

F (z) :=
∫
γ

1
z
,

where γ is any curve from 1 to z. The fact that this is well-de�ned, holomorphic and in fact a primitve
of 1

z follows exactly as in the proof of Exercise 25. Consider G (z) := z exp(−F (z)), then

dG

dz
= exp(−F (z)) − zF ′(z) exp(−F (z)) = 0.

It follows that G is a constant. Clearly F (1) = 0 from which it follows that G (z) ≡ 1 proving that
exp(F (z)) = z. If r is a real number close to 1 and r ∈ U , then

F (z) =

∫ r

1

dx

x
= log r .

�
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5 Montel’s thoerem

5 Montel’s thoerem

We will now study properties of families of holomorphic functions.

De�nition 28. Let F be a family of continuous functions on U . We say that F is

1. uniformly bounded on compacts if for each compact set K ⊂ U there is a constant CK such that

| f (z) | < Ck , z ∈ K , f ∈ F .

2. equicontinuous if for each compact set K ∈ U and ε > 0 there is a δ > 0 such that

| f (z1) − f (z2) | < ε,

whenever z1, z2 ∈ K , |z1 − z2 | < δ ;
3. normal if for each sequence fn in F there is a holomorphic function f : U → C such that on

each compact set K ⊂ U , fn → f uniformly.

Remark 29. It is easy to formulate the above de�nitions for arbitrary topological spaces.

Example 30. The standard example of an equicontinuous family is the set of holomorphic functions
on the unit disk whose derivatives are uniformly bounded on D. On the other hand, the family {zn }
de�ned on any open set containing the unit circle is not an equicontinuous family. Neither is it a
normal family. But it is uniformly bounded.

The above de�nitions might seem ad hoc and without adequate motivation. For a detailed treat-
ment, please refer to the textbook by Conway [Con73]. The theorem we would require is from the
Ph.D thesis of Montel. This remarkable theorem kick-started the subject now known as complex
dynamics which is one of the “hot” research areas.

Theorem 31. Let F be a uniformly bounded family of holomorphic functions de�ned onU . Then

1. F is an equicontinuous family.
2. F is a normal family.

Remark 32. The �rst conclusion of the theorem is not true for real-analytic functions. Consider the
family of functions {sin(nx )}. However, the famous Ascoli-Arzela theorem asserts that a uniformly
bounded and equicontinuous family is always normal. Holomorphicity is thus not needed in the proof
of the second conclusion.

Proof. Let K ⊂ U be an arbitrary compact set and let r = d (K, ∂U )
6 . Let z,w ∈ K with |z −w | < r and

let γ be the standard parametrization of ∂D2r (w ). Note that both z and w are in D2r (w ) and in turn
the closure of this disk is a subset of U . Thus by Cauchy’s integral formula

f (z) − f (w ) =
1
2πi

∫
γ
f (ζ )

[
1

ζ − z
−

1
ζ −w

]
dζ .

Note that �����
1

ζ − z
−

1
ζ −w

�����
=

|z −w |

|ζ − z | |ζ −w |
≤
|z −w |

r 2
,
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5 Montel’s thoerem

where the inequality follows because both |ζ −w | and |ζ − z | are lesser than r . Let M be the un�rom
bound for the family F corresponding to the set of points in U which is at a distance ≤ 2r from K .
Then by the ML-inequality, we get

| f (z) − f (w ) | ≤
1
2π

2πr
r 2

M |z −w |.

In short,
| f (z) − f (w ) | < C |z −w | ∀f ∈ {, z,w ∈ K , |z −w | < r .

This shows that F is an equicontinuous family.
For the proof of the second part, let {Kl }

∞
`=0 be an exhaustion by compacts of U , i.e.,

• K` ⊂ int(K`+1),
• U =

⋃∞
`=1 K` .

Exercise 33. Show that any domain in Rn admits an exhaustion by compacts.
Let {w j }

∞
j=1 be a sequence of points that is dense in U . We can extract subsequences

f 1,1, f1,2, f1,3 . . . . . .

f 2,1, f2,2, f2,3 . . . . . .

f 3,1, f3,2, f3,3 . . . . . .

f 4,1, f4,2, f4,3 . . . . . .

...
...
...
...
...

with the property that

• Each row is a subsequence of the preceding row,
• the sequence { fn,k (wn )}

∞
k=1 converges.

The diagonal subsequenceдn := fn,n clearly converges on the entire set {wn }. LetK ⊂ U be a compact
set. We will show uniform convergence of дn on K . Fix ε > 0 and let δ > 0 be as per the de�nition of
equicontinuity for the family F . We can �nd points w1, . . . ,wk such that the disks Dδ (wk ) cover K .
If z ∈ K , then z ∈ Dδ (w j ) for some j. Hence

|дn (z) − дm (z) | ≤ |дn (w j ) − дn (z) | + |дm (w j ) − дn (w j ) | + |дm (z) − дm (w j ) | < 3ε,

when n,m are suitably large. This shows that дn ’s are uniformly Cauchy and hence converge uni-
formly to a map д : U → C.
Exercise 34. Use Morera’s theorem to show that the uniform limit of a sequence of holomorphic map-
pings is holomorphic.

Observe that our choice of дn now depends on the compact set. Now the exhaustion by compacts
come into the picture.
Exercise 35. Complete the proof by applying another diagonal argument.

�

Theorem 36. Let fn : U → C be a sequence of injective holomorphic functions that converge uniformly
on compacts to a holomorphic map f . Then either f is constant or injective.
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6 Proof of the Riemann mapping theorem

Proof. Suppose f is not injective. Let z1, z2 ∈ U be distinct points such that f (z1) = f (z2). The
new sequence дn (z) := fn (z) − fn (z1) is a sequence of holomorphic maps that converge uniformly on
compacts to the holomorphic map д(z) := f (z) − f (z1). If д ≡ 0 then we are done. Otherwise, z2 is
an isolated zero of д. Observe that by our hypothesis of injectivity of fn , z1 is the unique zero of each
fn . By the argument principle

1 = 1
2πi

∫
γ

д′(z)

д(z)
dz,

where γ is a small circle centered at z2 chosen in such a manner that д has no zero on im(γ ) and no
zero besides z2 in the interior of γ . The sequence 1/дn converges uniformly to 1/д on γ and д′n → д′

uniformly on γ . Consequently

0 = 1
2πi

∫
γ

д′n (z)

дn (z)
dz →

1
2πi

∫
γ

д′(z)

д(z)
dz = 1,

a contradiction. �

6 Proof of the Riemann mapping theorem

Step 1. Mapping into a bounded subdomain of D. By hypothesis, we can �nd a point a ∈ C ∩ (C \ D).
The map z 7→ (z − a) maps D biholomorphically onto a domain that misses 0. Consider the map

f (z) := log(z − a).

This means that exp( f (z)) = z − a. Consequently, if z and w are distinct points in D, it follows
that f (z) , f (w ) + 2nπi for any n ∈ Z. Fix w ∈ D. Suppose there is a sequence zn → w such
that f (zn ) → f (w ) + 2πi . Exponentiating, we see that zn → w and therefore f (zn ) → f (w ), a
contradiction. This shows that we can �nd an open set N around f (w ) + 2πi such that f (D) ∩N = ∅.
De�ne

F (z) =
1

f (z) − ( f (w ) + 2πi ) ·

Now f is injective, and F is just the composition of f with a fractional linear transformation and
consequently F : D → F (D) is a biholomorphism. As f avoids N , it follows that F (D) is a bounded
set which we may assume, by rescaling, is an open subset of D that contains 0.

Step 2. Constructing the required biholomorphism. We will assume that D is a simply-connected open
subset of D. Let

F := {
f : D → D, f is holomorphic and injective with f (0) = 0} .

By Step 1., F is a non-empty set and by Montel’s theorem it is a normal family. Let

m = sup{| f ′(0) | : f ∈ F }.

Observe that the identity map certainly is in F and hence m ≥ 1. Let fn ∈ F be a sequence such
that | f ′n (0) | →m. By normality, we may assume, by passing to a subsequence, that fn → f : D → D.
Now, f (0) = 0 and also f ′(0) , 0 (why?!). This means that f is non-constant and therefore by the
open mapping theorem, f (D) ⊂ D. Moreover, by Hurwitz’s theorem, it follows that f is injective.

Step 3. Finishing the proof. We have to show that f is surjective. Suppose f misses a point b in D. Let
ψα be the automorphism ofD that interchanges 0 and α where α ∈ D. Let Ω := (ψb ◦ f ) (D). Note that
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Ω is simply-connected and misses 0. We can �nd a holomorphic branch of the square-root function
on Ω. Consider the map

F := ψд (b ) ◦ д ◦ψb ◦ f .

The map F is clearly injective and F (0) = 0. Let h denote the squaring function, we have

ψb ◦ h ◦ψд (b ) ◦ F = f .

Now, Φ := ψb ◦ h ◦ψд (b ) is clearly a self-map of D that �xes 0 and is not an automorphism of a disk.
Consequently, |Φ′(0) | < 1 which means that |F ′(0) | > | f ′(0) |, a contradiction and we are done.
Remark 37. The astute reader would have observed that we have actually used only the fact that the
domain D admits a branch of the logarithm. We have actually shown that the topological notion of
simply-connected is actually equivalent to the analytic requirement of admitting an analytic branch
of the logarithm!
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